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ometry noted for the two homochelates at the ends of the series. 
The intense bands at the red end of the visible spectra are 
consistent with the metal to ligand charge-transfer designation 
determined for the tetrakis 8-quinolinol derivatives of tung­
sten^ V).22 That is, the smaller aromatic picolinato ligands 
cause shifts to higher energies relative to the more highly 
conjugated quinolinolato ligands by about 0.06 jum-1 for each 
picolinato replacement. 
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The Photochemical Decomposition 
of l^-s-Tetrazine-15^ 

Sir: 

Recently Hochstrasser and King' reported that .r-tetrazine in 
mixed crystal systems undergoes isotopically selective photo­
chemical decomposition from both the lowest n-x* singlet and 
triplet state to yield, with near unit quantum efficiency,2 

stoichiometric quantities of nitrogen and hydrogen cyanide. 
No intermediate species were observed in this photolysis even 
when performed in organic crystals at 1.6 K.1-3 These obser­
vations led us to investigate further the nature of this intriguing 
photochemical reaction. We wish to report here the preparation 
and state selective photochemical decomposition of the isotopic 
species l,4-.r-tetrazine-'57V2. In addition, we draw attention 
to the potential of low temperature high resolution mixed 
crystal absorption spectroscopy as a novel nondestructive 
method for isotopic analysis. 

Two general reaction pathways are immediately discernible 
for this photoinduced reaction, the primary distinction being 
the occurrence or nonoccurrence of bonding between the ni­
trogen atoms disposed 1,4 in the tetrazine molecule. For ex­
ample, excitation as shown in eq 1, could lead either via a 
concerted (la) or stepwise (lb or Ic) process to N2 and HCN 
without the advent of a 1,4-nitrogen bonded intermediate. 
Alternatively, decomposition involving 1,4-bonding could 
proceed through such cyclic intermediates as triazacyclobu-
tadiene (eq 2).4 Refinement of the latter pathway allows for 
HCN extrusion to occur either prior to or after 1,4-nitrogen 
bonding. Ample precedent for eq 2 arises from the recent ob­
servation at room temperature of "Dewar" pyridine upon ir-

— 2 HCN t N , (I) 

-2HCN + N,- (2) 

hx ft" hv 
+ HCN (3) 
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radiation of pyridine in the liquid phase.5 In addition, Chap­
man and co-workers6 have demonstrated that cyclobutadiene 
is a secondary photochemical product of pyridine when irra­
diated at low temperature (8 K) in an argon matrix.7 

To distinguish between reaction pathways (1) and (2), s-
tetrazine labeled with nitrogen-15 specifically at the 1 and 4 
positions was required. Photochemical decomposition of this 
species via either pathway would yield 1 equiv of HCN (mol 
wt 27) and 1 equiv of HCN (mol wt 28). The resultant nitro­
gen, on the other hand, would be entirely mol wt 29 from 
pathway 1, while pathway 2 would yield an isotopic mixture 
OfN2:0.25 equiv of 14N2 (mol wt 28), 0.5 equiv of 14N15N (mol 
wt 29), and 0.25 equiv of 15N2 (mol wt 30). Mass analysis of 
the derived nitrogen would allow evaluation of the relative 
contribution pathways (1) and (2) make to the overall photo­
chemical reaction. 

Isotopically labeled 1,4-s-tetrazine- 15TV2 of high purity was 
prepared via the method of Spencer, Cross, and Wiberg8 as 
modified by King9 employing ethyl diazoacetate-15TYi avail­
able in high yield upon diazotization10 of ethyl glycinate hy­
drochloride with nitrous acid generated from sodium nitrite-
15TVi (99.5%)." Initial isotopic composition of the nitrogen-15 
enriched s-tetrazine was determined by low temperature high 
resolution mixed crystal absorption spectroscopy. Optical 
quality single crystals of benzene were grown by the Bridgeman 
technique12 from high purity benzene doped with the enriched 
s-tetrazine at ca. 10~5 mol per mole. Figure 1 displays at high 
resolution (ca. 0.15 cm - ' ) the origin regions of the lowest en­
ergy singlet-singlet absorption spectra of s-tetrazine and 
1,4-5-tetrazine-15TV2 in benzene at 4.2 K. Clearly evident in 
Figure 1 are the transitions due to the isotopic species: s-
tetrazine-15TV,; -15N2; -15N3; -15N2

13C,. The respective in­
tensity ratios of 1.6:100:2.7:2.2 were calculated assuming a 
natural abundance of carbon-13 (e.g., 1.1%). These mea­
surements were repeatable and accurate to 0.1% abundance. 
Confirmation of this analysis by high resolution mass spec­
trometry14 establishes the utility of high resolution absorption 
spectroscopy for isotopic analysis. The relatively large amount 
of s-tetrazine-15TV3 in the enriched sample (expect 0.75% from 

natural abundance) indicates, as expected,10 that some isotopic 
exchange occurs during the diazotization step of the chemical 
synthesis. 

State selective irradiations of 1,4-s-tetrazine- 15TV2 in the gas 
and solid phases were performed at room temperature with 
either a 1000-W Xe or high pressure Hg arc properly filtered 
to selectively excite either the 3n7r* (7500-6000 A), 'mr* (5800 
A), or '7T7r* (3200-2500 A) state. Approximately 1 mg of ni­
trogen-15 enriched s-tetrazine was photolyzed in each case. 
The photoproducts were subsequently fractionally distilled into 
a high resolution mass spectrometer. In every experiment the 
results were identical. The only species observed over a trap 
held at 77 K was 14N15N (m/e 29). No 15N2 (m/e 30) (i.e., 
1.5% or less) was observed. When the trap temperature was 
raised to 273 K, two isotopic species of HCN (m/e 27 and 28) 
were detected in approximately equal amounts. The small 
amount of tetrazine-15TV3 (e.g., 2.7%) present in the labeled 
tetrazine sample was expected to lead to ca 1.3% of ' 5N2 (m/e 
30); however, this was not detected as the instrumentation14 

ignores peak intensities at the level of 1.5% or less. 
From these results we conclude that 1,4-nitrogen bonding 

plays a negligible role in the overall photochemical decompo­
sition of ^-tetrazine. Second, the photochemical decomposition 
of s-tetrazine leads to the same products with the same isotopic 
distributions following excitation to either the singlet or triplet 
state. This result is consistent with the suggestion1 that the 
dissociation of the triplet is spin-orbit induced. These results 
coupled with the absence of observable intermediates at 1.6 
K and the fact that the reaction occurs equally efficiently in 
solids, liquids, and gas (i.e., there is little steric influence on 
te reaction) would seem to favor reaction processes la or lb.15 

Finally, this study demonstrates for the first time that high 
resolution low temperature mixed crystal absorption spec­
troscopy has significant potential as an alternate accurate 
method for analysis of isotopic compositions on the nanogram 
level. 
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Synthesis of Methionine Carrying a Chiral Methyl Group 
and Its Use in Determining the Steric Course of the 
Enzymatic C-Methylation of Indolepyruvate during 
Indolmycin Biosynthesis 

Sir: 

Transmethylation reactions involving the transfer of the 
methyl group of methionine are widespread in nature, but little 
is known about their detailed mechanism. This communication 
describes a synthesis of the two diastereomers of L-methionine 
carrying a chiral methyl group and the results of experiments 
using these substrates as methyl donors in the in vivo synthesis 
of the antibiotic, indolmycin (1). 

The reaction sequence for the methionine synthesis is shown 
in Scheme I. The S- and /?-[2-2Hi,3Hi]acetates needed as 
starting materials were prepared by using the glycolytic en­
zymes to synthesize R- and S'-[3-2Hi,3Hi]pyruvates,1'2 which 
were trapped as lactate using an excess of lactate dehydroge­
nase and NADH. Lactate was isolated by paper chromatog­
raphy (Whatman 3MM, e thanol-NH 4 OH-H 2 0 8:4:17) and 
oxidized to acetate.3 The chirality of the methyl group of these 
acetate samples and others described below was determined 
by the method of Cornforth et al.4 and Arigoni et al.,5 following 
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Eggerer's procedure.4 In this procedure the acetate sample is 
enzymatically converted to malate which is then equilibrated 
with fumarase. During equilibration, malate samples synthe­
sized from the ^-isomer of acetate retain less than half of their 
tritium while samples synthesized from the /?-isomer retain 
more than half of their tritium. 

The first step in the synthesis of methionine is the Schmidt 
degradation of acetate to methylamine,6 which is trapped as 
the hydrochloride and tosylated by heating with />-toluene-
sulfonyl chloride in 10% aqueous NaOH. The second tosyl 
group is introduced by refluxing the monotosylate, p-tolu-
enesulfonyl chloride, and K2CO3 in anhydrous xylene. The key 
step in the sequence is the use of the ditosylimide function as 
a leaving group in the alkylation of the homocysteine anion 
with the chiral methyl group.7'8 This reaction was performed, 
under an argon atmosphere, by treating a suspension of ben­
zyl- L-homocysteine in HMPA with Na-K alloy, followed by 
addition of the ditosylimide and heating to 80 0 C. Methionine 
was purified by ion exchange (Dowex 5OW, 10% NH4OH) and 
thin layer (silica gel 60 F-254, 1-butanol-acetic ac id-H 2 0 
4:1:1) chromatography. The Schmidt reaction is known9 to 
proceed with retention of configuration and the ditosylimide 
displacement should involve inversion of configuration, race-
mization being the only plausible alternative.10 Thus, S-[2-
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